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Our mission is to 

(i) use an integrated, network-
based, systems biology-driven 

approach to define the 
etiology of complex diseases; 

(ii) reclassify complex diseases 
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pathobiological mechanisms; 

(iii) to develop new treatments 
and preventive strategies 

based on these new disease 
classifications using systems 
pharmacology approaches”
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Metabolomics



Environment; Diet; Air pollution; Geography; 
Demographics

Microbiome

The Central Biological Dogma



Complete set of metabolic and 
physical processes determining 

physiological & biochemical 
properties of a cell

• chemical reactions of metabolism
• metabolic pathways
• regulatory interactions

Metabolic Networks



GLOBAL PROFILING OF ALL THE 
SMALL MOLECULES 

(<900 daltons) IN A BIOLOGICAL 
SYSTEM

Captures metabolic and physical 
processes determining physiological and 

biochemical properties of a cell

Metabolomics
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Metabolomic Profiling Platforms

Nuclear Magnetic Resonance 

• Most commonly H1 or C13

• Spectra based on the chemical shift 
induced by strong magnetic field

• Quantitative

• Highly reproducible

• Provides structural information

Mass spectrometry 

• Ionization followed by assessment 
of mass-to-charge ratio

• More Sensitive

• Can measure more metabolites



Targeted

• Comprehensive 
‘Global” analysis of all 
measurable analytes
in a biological sample

• Includes metabolites 
of unknown identity

• Relative abundance

• Measurement of 
defined groups of 
chemically 
characterized and 
biochemically 
annotated metabolites

• Fewer Metabolites

• Absolute quantification

Metabolomic Profiling Data: 
Targeted versus Untargeted

Untargeted



PAST
Environment Preceeding “omes” 

What can the Metabolome tell us? 

“Instantaneous 
Snapshot of the 

Physiological Status 
of a Biological 

System”

PRESENT
Environment Phenotype

FUTURE
Pre/Early Stage Pathogenesis



PREDICTION DIAGNOSIS

PROGNOSIS

THERAPEUTIC 
RESPONSE

IMPROVED UNDERSTANDING OF BIOLOGICAL 
MECHANISMS

SUSCEPTIBILITY

ENOTYPING

RECURRENCE

DISEASEDHEALTHY

EXPOSURE

What can the Metabolome do for us? 

Metabolomic Biomarkers



Metabolomics 
is a Rapidly 

Growing Field Number of Metabolomics Related 
Publications Per Year Since 2000

PUBMED SEARCH TERMS: (metabolom*[title] OR (Metabolite profil*[title]) OR (metabolite signature[title])) 
SEARCH DATE: 22/4/2020



Metabolomics Can be Noisy

Technical HeterogeneityBiological Heterogeneity



17

• Many existing 
metabolomic cohorts 
have limited sample sizes

• Meta-analyses provide:
 More power to 

detect an effect
 More precise and 

accurate effect 
estimates

 More generalizable 
findings
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Power vs. Sample Size
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Obtaining the Strongest Metabolomic Findings



Meta-Analyzing Metabolomic data Can be Complex

Metabolomic
Data

Relative 
Nature of 

Measurement

Inconsistent 
Nomenclature

Incomplete 
Coverage of the 

Metabolome

(2S)-2-amino-3-(1H-indol-3-yl)Propanoic acid

(2S)-2-amino-3-(1H-indol-3-yl)Propanoate

(S)-a-amino-1H-Indole-3-propanoate

(S)-alpha-amino-1H-Indole-3-propanoic acid

(S)-alpha-amino-beta-(3-Indolyl)-propionic acid

(S)-Tryptophan

1H-Indole-3-alanine

L-(-)-Tryptophan

L-beta-3-Indolylalanine

L-β-3-indolylalanine

Plus 71 other synonyms…



The COnsortium of METabolomic Studies 
(COMETS)



• Extramural-intramural partnership promoting collaboration among 
prospective metabolomic epidemiology studies 

• Mission and Objectives

• Provide framework to foster international collaborations          
among studies sharing common objectives;

• Provide  forum for the discussion, development & pursuit of        
new research

• Advance knowledge of the metabolome

• Membership Eligibility 

• Prospective cohort, 100+ participants with blood metabolomics

• Phenotype follow-up 

• MS or NMR
https://epi.grants.cancer.gov/comets/

Yu et al. AJE, (2019) 188; 6

Krista Zanetti: 
COMETS Program Officer

Jessica Lasky-Su
COMETS Chair

https://epi.grants.cancer.gov/comets/
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Steven C. 
Moore

Ewy
Mathé

Marinella
Temprosa“a freely-accessible cloud-based, self-serviced 

analytic platform developed for consortium-
based metabolomics analyses”

Built-in Metabolite Harmonization: continually 
updating master list of metabolites with 

multiple levels of information 

Yu et al. AJE, (2019) 188; 6
Methods paper in Development (Temprosa et al.)



Analysis Pipeline

Courtesy of Ella Temprosa



COMETS Analytics maintains a dynamic continually updating master list of 
metabolites with multiple levels of information on every metabolite submitted 
for analysis, Including:
• Chemical Id (HMDB, KEGG, CHEBI, etc.)
• Platform assigned super pathways
• m/z and retention time
• Metabolite classification via metabolomics work bench and metabolon

Automatic and manual curation

Metabolite Harmonization: 
All available metabolite 
information



The Metabolome of BMI:

A COMETS Meta-analysis



Age Standardized Mean BMI in Men by Country in 2014

NCD Risk Factor Collaboration, The Lancet (2016)



BMI is perfectly suited to 
Metabolomic Exploration

Genetics Environment

Metabolome: 
downstream readout 

reflecting G*E



COMETS Proposal:
The BMI of Obesity

• Aim 1: To evaluate relationships between 
blood metabolite concentrations and BMI 
across multiple cohorts utilizing a meta-
analysis approach within the COMETS
consortium

• Aim 2: To evaluate heterogeneity of 
associations by participant characteristics 
and by study characteristics 

27



Methods
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Cohort Specific Analyses
Metabolite~BMI

Meta-Analysis

Evaluation of Heterogeneity

False Discovery Correction

Pathway analysis/Metabolite 
visualization 



Investigated Models

Pre-specified Models in 
the User Input File



126,423 Participants from 
46 Cohorts



Participant Mean BMI
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Participant Characteristics



1367 Harmonized Metabolites



BMI~Metabolite Correlations

969 Metabolites 
(70.9%)

Significant at 
p<0.05

1.2 Multivariable 
Adjusted Model

Adj for; age, gender, race, 
educational level, smoking 
status, alcohol 
consumption, fasting 
status, nested case-control 
status 



BMI~Metabolite Correlations

557 Metabolites 
(40.7%)

Significant at 
p<3.36x10-5

(Bonferroni)

1.2 Multivariable 
Adjusted Model

Adj for; age, gender, race, 
educational level, smoking 
status, alcohol 
consumption, fasting 
status, nested case-control 
status 



224 Metabolites 
(16.4%)

Bonferroni 
Significant with 

Strong Correlation

1.2 Multivariable 
Adjusted Model

Adj for; age, gender, race, 
educational level, smoking 
status, alcohol 
consumption, fasting 
status, nested case-control 
status 

N=76 N=148

BMI~Metabolite Correlations



Metabolite Superpathway Coef. (95%CI) P-Value

PC(o-
22:0/22:6(4Z,7Z,10
Z,13Z,16Z,19Z))

GLYCERO-
PHOSPHOLIPIDS -0.2 (-0.21,-0.19) 6.41E-160

PC(18:0/24:0)
GLYCERO-
PHOSPHOLIPIDS -0.19 (-0.2,-0.17) 5.90E-143

X - 11315 UNKNOWN -0.18 (-0.2,-0.16) 4.57E-53

LysoPC(18:2(9Z,12Z
))

GLYCERO-
PHOSPHOLIPIDS -0.21 (-0.24,-0.18) 2.56E-52

Guanidinosuccinic 
acid AMINO ACIDS -0.15 (-0.17,-0.13) 4.91E-50

Cinnamoylglycine XENOBIOTICS -0.16 (-0.18,-0.14) 8.32E-49

2-3-PROPYL2-
(TRIMETHYLAMMO
NIO)ETHYLPHOSPH
ATE

GLYCERO-
PHOSPHOLIPIDS -0.16 (-0.18,-0.13) 5.50E-44

L-Asparagine AMINO ACIDS -0.16 (-0.19,-0.14) 7.42E-40

PC(18:1(9Z)/24:0)
GLYCERO-
PHOSPHOLIPIDS -0.17 (-0.2,-0.15) 3.20E-39

LysoPC(18:1(9Z))
GLYCERO-
PHOSPHOLIPIDS -0.19 (-0.22,-0.16) 1.85E-34

Metabolite Superpathway Coef. (95%CI) P-Value

cortolone
glucuronide UNKNOWN 0.4 (0.37,0.43) 2.06E-125

L-Valine AMINO ACIDS 0.26 (0.24,0.28) 1.39E-110

L-Tyrosine AMINO ACIDS 0.22 (0.2,0.24) 1.76E-94

X - 17340 UNKNOWN 0.28 (0.25,0.3) 1.05E-84

N2,N2-
Dimethyl
guanosine NUCLEOTIDES 0.21 (0.19,0.23) 1.83E-74

L-Isoleucine AMINO ACIDS 0.24 (0.22,0.27) 5.57E-68

2-Hydroxy
butyric acid

ALPHA 
HYDROXY 
ACIDS 0.16 (0.15,0.18) 6.64E-61

L-Leucine AMINO ACIDS 0.23 (0.21,0.26) 1.12E-57

X - 17357 UNKNOWN 0.19 (0.17,0.22) 3.61E-57

L-Kynurenine AMINO ACIDS 0.18 (0.15,0.2) 2.71E-56

Top Metabolite Hits



Additional Adjustment for Diabetes

Multivariable Model
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Adj. age; gender; race; educational level; smoking status; alcohol 
consumption; fasting status; prevalent diabetes; nested case status

Comparison of Correlation Coefficients for significant metabolites in the two models

Adj for; age, gender, race, educational level, smoking status, alcohol 
consumption, fasting status, nested case-control status (and Diabetes)



www.metaboanalyst.ca

Pathway 
Analysis of 
969 
Significant 
Metabolites

Arginine Biosynthesis
Valine, leucine & Isoleucine 

biosynthesis

Aminoacyl-tRNA biosynthesis

Caffeine 
metabolism

Phenylalanine, tyrosine & 
tryptophan Biosynthesis

Alanine, aspartate & glutamate 
metabolism

Glycine, serine & 
threonine metabolism



Cochrane’s Q-Value versus –log10(p-value) for Each Metabolite

Cochrane’s Q-Value

 Used to assess  between 
Study Heterogeneity

describes % variability in 
effect estimates due to 
heterogeneity rather than 
chance

Larger Q value (& smaller 
Q p-value) means more 
likely there is heterogeneity 
between studies

460/557 Bonferroni 
significant metabolites, 
(82.6%) were ‘significantly’ 
heterogeneous 

Sensitive to large numbers



Valine
Correlation Coefficient by Cohort Correlation Coefficient by Strata



Sources of 
Heterogeneity

Gender

Fasting 
Status

Case 
Status

0                                                                                                                 0.99   

N Metabolites Exhibiting Significant 
Heterogeneity by Strata

• Wald’s Chi Square Test 
used to assess between 
Strata heterogeneity

• Fasting Status and 
Gender are the biggest 
sources of heterogeneity

• Case status does not 
appear to be a significant 
source of heterogeneity

0                                                                                                                 0.99   

0                                                                                                                 0.99   



Metabolome of BMI
Insulin 

Resistance

Altered 
Glucose 

Metabolism
Altered Lipid 
Metabolism

Low-grade 
Inflammatory 

State

Steatosis

Enhanced 
Cell Growth

Dyslipidaemia

Oxidative 
Stress



Conclusions & 
Future Directions



Conclusions

 It is feasible to perform large scale meta-analyses across multiple diverse 
metabolomics cohorts 

• Different populations

• Different profiling platforms

• Targeted and untargeted

• NMR and Mass Spec

• Serum and plasma

We demonstrate that such meta-analyses can provide robust and biologically 
informative results

An increased BMI is associated with increased levels of amino acids, in 
particular branched chain amino acids, and with decreased levels of 
cholesterol esters and High Density Lipoproteins
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Next Steps

Incorporate remaining studies

Further exploration of heterogeneity

Assessing correlation between “top hits”

Identification of metabolite profiles/signatures in 
addition to individual metabolites

Considerations of extremes of BMI

Consideration of adiposity measures in a subset

Pathway/Network Interpretation

46



Recruitment of cohorts 
is ongoing

Any participating 
investigator can submit 
a project proposal for a 
meta-analysis across 
the cohorts

A wealth of data is 
waiting to be explored!

https://epi.grants.cancer.gov/comets/

https://epi.grants.cancer.gov/comets/
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